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Model Inversion Using Bayesian Inference And Genetic Algorithms Part II: A
Simplified Born-Mayer Potential
Brian J. Reardon, MST-6, Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract
This work explores the use of a genetic algorithm (GA) in conjunction with

Bayesian inference to optimize the parameters of a simplified Born-Mayer potential
function.  The efficiency of the GA and the accuracy of the information provided by the
Bayesian analysis were examined by varying the number of objectives and parameters.
The number of objectives was varied by taking higher order derivatives of the potential
function.  Likewise, the number of variables was changed by adding a dummy variable
to the gene sequence.  This variable is not implemented in the objectives themselves.
Rather, it serves as a measure of performance for the GA and the Bayesian analysis.

The results of this work indicate that both the GA and the Bayesian analysis
techniques can easily handle large numbers of objectives.  The implementation of a
dummy variable has an effect on the selection procedure during the niching operation.
This results in the dummy variable appearing to be more sensitive or influential than
other parameters actually used in the objective functions.  The apparent sensitivities of
the parameters as obtained from principle component analysis (PCA) were confirmed
by the evolution of the expectation values and standard deviations.
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1.0 Introduction

1.1 Inverse and Ill Posed Problems in Materials Science and Engineering

There is an ever increasing need in materials science and engineering to fit the

parameters of models, which are to be used in a predictive capacity, using

underdetermined experimental data sets.  Model inversion of this type falls under the

general category of inverse and ill – posed problems and can often be cast into the

framework of Bayesian statistics (Tarantola, 1987).  Such problems include determining

powder densification models from limited density data, chemical potential determination

from limited phase diagram data containing a high degree of uncertainty, and

mechanical threshold strength determination from mechanical tests also with a high

degree of uncertainty.  In all of these examples, model parameters must be optimized

using limited and uncertain data sets that leave the inversion underdetermined.

Likewise, if the models are to be used in a predictive capacity, there is a need to be able

to quantify the expected deviation of the model from reality.

This report shows how a fuzzy logic based multi-objective genetic algorithm (GA)

(Reardon 1999) can be used as a Bayesian Inference Engine (BIE) to evolve a posterior

probability density (PPD) of the model parameter vector space:

Mi = {m1, m2, m3,…, mN}T Eq. 1

where M I is a particular model to be tested, mJ is one of the N parameters used in the

model and T signifies the transpose of the vector.  The GA evolves a set or population

of MI’s which effectively defines the PPD.  Once the PPD has been sufficiently

determined by the GA, parameter vectors are selected and used in the physics of the

forward problem, for future experimental conditions, to evaluate the predictive capacity

of the model.
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The ability of the GA and Bayesian statistics to handle multiple variables and

objectives will be addressed here with a simplified Born-Mayer interatomic potential.

The potential function has the form:

Φ =
1
r

+ A * e x pσ − r( )d( ) Eq. 2

where r=1.17288 is the interatomic distance, A is the pre-exponential factor, σ is the

sum of the two radii of the atomic pair, and d is the hardness parameter.  When A=4.0,

σ=0.4, and d=4.0 the derivatives of Eq. 2 have the values:

Φ = −0.67087

∂Φ
∂r

= 4.9085E − 6

∂2Φ
∂r2 = 1.6681

∂3Φ
∂r3 = −8.4602

∂4Φ
∂r4 = 35.710

∂5Φ
∂r5 = −139.99

∂6Φ
∂r6 = 508.56

∂7Φ
∂r7 = −1570.1

∂8Φ
∂r8 = 2310.7

Eq. 3

The goal of this study is to determine the efficiency to which the GA finds the values of

A, σ, and d given that the objective values of Eq. 3 are known to ±1%.  The number of

objectives used in the optimization will be systematically increased to evaluate the GA’s

ability to handle large numbers of objectives.  Furthermore, a dummy variable will be
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incorporated into the optimization to determine the effects of increasing the number of

variables and to evaluate the GA’s ability to overcome genetic drift.  Thus, the model

parameter vector will have the form:

Mi = {Ai, σi, dI, Ri}
T Eq. 4

where 3.5≤A≤8.0, 0.395≤σ≤0.41, 3.5≤d≤8.0, and 0.0≤R≤1.0.  The choice of ranges for

A, σ, and d where selected based on the fact that σ is often well known from diffraction

data and other experiments whereas A and d are not experimentally accessible.

1.2 Bayesian Statistics in Model Inversion
Consider a model parameter vector such as the one defined in Eq. 4 and also consider

a data vector defined as:

D = d1, d2,d3, . . . , dND{ }T
Eq. 5

where ND is the total number of experimentally derived data points.  The goal of

Bayesian analysis is to come up with a way of accepting or rejecting a particular model

(M) or hypothesis given an experimental data set (D) and prior knowledge about the

problem.  Thus, in Bayesian statistics, the model or hypothesis is assigned a probability

of acceptance and the total probability distribution function (PDF) of a series of models

being tested makes up what is commonly called the posterior probability density (PPD).

This goal is achievable through the central tenant of Bayesian statistics,  Bayes’

Theorem:

σ M | D( ) =
P M,D( )

P D( ) =
P D | M( )P M( )

P D,M( )dM∫
 Eq. 6

which is essentially the definition of conditional probability.  This rule was first proposed

by Rev. Thomas Bayes and published posthumously in 1763 but has been ignored up
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until the last 20 years due to the computational difficulties in evaluating the probability

integrals (Bayes, 1763).  This theorem says that the conditional probability of a model

being correct given a set of data is a ratio of the PDF of M and D to the PDF of D alone.

The term P(D | M) is not a PDF but a likelihood function.  Thus, while the individual

components of P(D | M) are probabilities, the function itself does not integrate to 1.0.

Bayes’ rule as written above differs considerably from classical frequentist

statistics because of the dependence of the PPD on the prior PDF, P(M).  P(M) often

contains subjective information about the problem that the experimentalist has a priori.

Another major departure from frequentist statistics is the way the PPD is updated as

new experimental data becomes available.  The frequentist view point is that P(D)

should be considered an unchanging distribution and also that it is inappropriate to try to

assign a probability of correctness to a hypothesis.

Consequently, Bayes’ Rule provides the scientist with a tool that classical

statistics is not capable or providing, namely, a mathematical formalization of the

scientific method.  When a phenomenon is observed, a hypothesis explaining the event

is created often with the observer’s own bias and experience in mind.  This hypothesis

is then tested against new experimental data and if the data supports the hypothesis

then the belief in or probability of acceptance of the hypothesis increases.  An excellent

introduction to the Bayesian approach to hypothesis testing can be found in Chapter 4

of Antelman (1997).

The main difficulty in using Bayes’ rule, lays in the evaluation of the denominator:

P D( ) = P D,M( )∫ dM, Eq. 7

where the integral is formally carried over the entire N-dimensional model parameter

space.  The accurate and fast approximation of the integration of these N-dimensional,

discontinuous PDF’s is the topic of many papers.  Duijndam (1988a, 1988b) discussed

the used of Bayes’ Rule in model inversion and accomplished the above integration by

assuming the PPD had a Gaussian shape then optimized the Gaussian parameters
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using least squares.  Unfortunately, most PPD’s are not Gaussian in nature and thus

other techniques were needed.  These techniques include Monte Carlo integration,

Gibb’s Sampling, and genetic algorithms (Sen and Stoffa ,1992, 1996; Sen et al., 1993;

Mallick, 1995; Gerstoft, 1998).

The PPD is a difficult function to visualize due to its multidimensionality and its

change with every new experimental data point. However, once the PPD is derived,

regardless of the method, a number of important parameters describing it can be easily

calculated.

The mean model can be calculated using:

M = Mσ M | D( )dM∫ Eq. 8

Likewise, the a posteriori model covariance matrix is given by:

CM = M − M( ) M − M( )T
σ M | D( )dM∫ . Eq. 9

The covariance matrix provides a number of useful parameters.  The standard deviation

associated with the mean model is obtained through the square roots of the diagonal

elements of CM.  Normalization of CM through:

Cij =
Cij

Cii Cjj

 Eq. 10

produces the correlation matrix.

With CM determined, a principle component analysis (PCA) will provide valuable

insight on how well the GA is converging and what model parameters are most

significant or sensitive.  In PCA the CM is transformed into a new set of axes of the

same number which are orthogonal to each other and are ordered based on the

variance associated with that axis.  The principle components of CM can be obtain by
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computing its set of eigenvalues (Λ) and corresponding orthogonal eigenvectors (U)

such that:

CM=UΛUT Eq. 11

is satisfied.  In a d-dimensional variable space there are d eigenvalues or principle

components.  However, many principle components may have small variances and thus

the intrinsic dimensionality of CM is k where k<d.

In the context of a PPD evolved by a GA, PCA is a powerful tool that assists in

overcoming many deficiencies in GA’s.  First, as the population evolves, the sum of the

eigenvalues of CM approach a limit.  When the rate of convergence reaches an

acceptable minimum the GA can be stopped.  Second, the largest eigenvalues and their

corresponding eigenvectors indicate the most significant variables or groups of

variables in the model given the available data.  Thus, PCA provides a sensitivity

analysis for the variables in the model.

Once a PPD has been determined to be reliable based on the stabilization of the

eigenvalues, an optimum model can be selected.

1.3 Genetic Algorithms in Model Inversion and Parameter Optimization

A detailed account of how a GA operates has been provided elsewhere (Reardon

1998a, 1998b, 1999).  In short, a GA randomly generates a set or population of

parameter vectors Mi’s where i = 1 to N and N is the population size.  This initial

selection, which occurs within parameter ranges set by the user, constitutes the a priori

information used in Bayes’ Theorem.  From this set, parameter vectors that satisfactorily

solve the optimization problem are selected.  The selected members, which are each

defined by a haploid binary string, exchange string components and thus create new

members.  The bits of the new member’s strings are then randomly flipped with a small

degree of probability from 1 to 0 or vice versa.  The final members are then inserted into

the next generation.  Once the next generation is filled the GA starts over with selection,

crossover and mutation.
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Since the GA acts as a BIE in that it uses Bayes’ Theorem to select members in

the population for crossover, the output of the GA is the PPD.  The generation of a PPD

now allows for many of the statistical tools available in Bayesian statistics to be used in

the analysis of the output of the GA.  Namely from the PPD we can derive <M> and CM.

The beauty of this approach is that the PPD can be generated at virtually no extra cost.

Following the method outlined by Sen and Stoffa (1992), a 2-D array of M X B is

reserved where M is the number of parameters and B is the number of values each

variable can take (i.e. the number of bins).  For each model at each generation an

unnormalized PPD, σ(M), is computed and stored in the proper position in the bin array

for each model parameter comprising each model.  At the end of the GA run the model

parameter PPD values are normalized.  Also in a vector of length M, each component of

M σ(M) is stored and summed with the correspond values from the other models.  This

vector provides <M>.  CM is determined by summing up MMT σ(M) in a square array of

MM for each model and at the end of the run subtracting <M><M>T.  The FORTRAN 90

code used to evaluate these quantities was presented previously (Reardon, 1999).

Once the PPD, <M>, and CM have been sufficiently determined, the GA can be

stopped and optimal model parameter vectors can be selected and used in the physics

of the forward problem for conditions that have not been experimentally tested.

2.0 Simplified Born-Mayer Potential
Figures 1-4 show the eigenvalues as a function of generation for the optimization

problem involving A, σ, d, and R.  The corresponding eigenvectors are displayed in

Table I.  A total of nine optimizations were carried out, each with one additional

objective.  Thus, the first optimization used only the first objective, the second

optimization used the first two objectives and so on.  The smallest eigenvalues are

shown in figure 1 and correspond to the first eigenvector column of Table I.  This

eigenvector is dominated by σ for all nine optimizations.  Due to the small size of the

first eigenvalue compared to the others, it can be concluded that σ is not a dominate or

sensitive parameter in this model.  This lack of sensitivity is due primarily to the small

size of the search range.  A larger search range would give a different value for the
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sensitivity but in extending the range one is also requiring the GA to traverse a

significantly more difficult function landscape.  This fact is the reason why previous work

(Reardon 1998a) did not show definitive convergence of the parameters.  Additionally,

since, in the Born-Mayer potential, σ is usually defined as the sum of the radii of two

interacting atoms and since this quantity is usually well known, there is no reason to

allow it a large search range.

The next smallest eigenvalue distribution is displayed in figure 2.  Figure 2

indicates that eigenvalue #2 increases as the number of objectives used in the

optimization increases.  This would indicate that the parameters which dominate the

corresponding eigenvector of eigenvalue #2 also become more sensitive as the number

of objectives increases.  Inspection of the second column of Table I shows that

eigenvalue #2 is dominated by the hardness parameter, d.  The d parameter becomes

more significant with the number of objectives since each time a derivative is taken the

exponential term is multiplied by –d.

The next smallest eigenvalue distribution is displayed in figure 3.  Figure 3

indicates that eigenvalue #3 increases slightly as the number of objectives used in the

optimization increases and is approximately four times larger than eigenvalue #2.

Again, this would indicate that the parameters which dominate the corresponding

eigenvector of eigenvalue #3 also become slightly more sensitive as the number of

objectives increases.  Inspection of the third column of Table I shows that eigenvalue #3

is dominated by the dummy variable, R.  This result is rather counter intuitive given that

R is not actually used in any of the objective equations.  The explanation lies not in the

objectives but in the selection routine itself.

In the selection routine, each parameter vector is used in the evaluation of each

objective function fj(Mi) where j = 1 to ND (ND: number of objectives or experimental data

points).  The outcome of the objective function call is then compared to the experimental

data using the fuzzy rule set of Figure 5 to obtain a scaled fuzzy fitness value fj
’(fj(Mi)).

In Figure 5, Dj is the experimentally observed data point and Ej is the uncertainty

associated with Dj.  fj:max is the maximum value for objective j in the entire population and
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fj:min is the minimum.  The fuzzy fitness fj
’(fj(Mi)) is obtained by finding where fj(Mi) lays on

the x axis of Figure 5 and assigning its corresponding y-axis value.  The total fuzzy

fitness of MI then is defined as:

FT Mi( ) =
1

ND

fj
' fj Mi( )( )

j =1

ND

∑ Eq. 12

where D is the number of objectives.  This relation provides the fitness of a model

vector as a number between 0 and 1, where 1 is the best fit.  The GA selects two

members based on their fitness likelihood as defined in figure 5 and Eq. 12.  The two

selected members are then compared.  If one is better fit than the other then the better

fit is selected.  If they have the same fitness then they are selected according to

whoever has the smallest phenotypic crowding factor when compared to the partially

filled next generation.  In other words, the most unique of the two individuals, when

compared to the partially filled next generation, is selected.  Thus, as the significant

parameters begin to converge, the crowding factor and, by default, selection becomes

dominated by R.

The largest eigenvalue distribution is displayed in figure 4.  Figure 4 indicates

that eigenvalue #4 decreases as the number of objectives used in the optimization

increases.  This would indicate that the parameters which dominate the corresponding

eigenvector of eigenvalue #4 become less sensitive as the number of objectives

increases.  Inspection of the fourth column of Table I shows that eigenvalue #4 is

dominated by the pre-exponential factor, A, and to a smaller extent the hardness

parameter, d.  The A parameter becomes less significant with the number of objectives

since each time a derivative is taken the exponential term is multiplied by –d and thus A

loses importance in the overall scheme of things.

Figures 6-9 show the average values of the four variables in the optimization as a

function of generation and number of objectives.  When three or less objectives are

used in the optimization, <A> and <d> tend to converge towards incorrect values.
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However, as the number of objectives increases beyond four, the problem becomes

less underdetermined and thus the averages for the population converge towards the

correct values.  The values for <σ> and <R> do not show any clear trends as the

number of objectives increases.

Figure 10-13 shows the standard deviations of the four variables in the

optimization as a function of generation and number of objectives.  For the A parameter,

as the number of objectives increases the standard deviation decreases indicating that

the variable is converging more easily with more objectives.  The d parameter shows, to

a smaller extent, the opposite trend.  The standard deviations of σ and R do not indicate

any clear convergence pattern.

The dummy variable, R, was originally placed in the optimization in order to

evaluate the performance of the GA. If the GA is functioning correctly, then the

distribution of R should remain random as a function of generation.  If, however, the GA

is succumbing to genetic drift, then the distribution of R will converge to a single value

after a sufficient number of generations.  Unfortunately, the randomness of R, in light of

the convergence of the other parameters, may have had a detrimental effect on the

selection procedure as well as the sensitivity analysis.

To confirm that R did in fact impact the optimization as specified, it was removed

and the optimizations rerun.  Figures 14-16 show the three eigenvalues for each of the

nine optimization conditions with their corresponding eigenvectors displayed in Table II.

The smallest eigenvalue (figure 14) shows that for all nine optimization conditions, σ is

the most insensitive parameter.  The two largest eigenvalues are approximately the

same order of magnitude and thus of equal sensitivity.  The eigenvectors show that

eigenvalue #2 is dominated by the d parameter and to a lesser extent, A, and increases

in value as the number of objectives increases.  Likewise, eigenvalue #3 is dominated

by A and to a lesser extent, d, and decreases as the number of objectives increases.

Figures 17-19 show the average values of the three variables in the optimization

as a function of generation and number of objectives.  When three or less objectives are

used in the optimization, <A> and <d> tend to converge towards incorrect values but
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converge to a value closer to 4.0 when 4 or more objectives are used.  The value for

<σ> does not show any clear trends as the number of objectives increases.

Figure 20-22 shows the standard deviations of the three variables in the

optimization as a function of generation and number of objectives.  For the A parameter,

as the number of objectives increases the standard deviation decreases indicating that

the variable is converging more easily with more objectives.  The d parameter shows, to

a smaller extent, the opposite trend.  The standard deviations of σ do not indicate any

clear convergence pattern.

The behavior of the expectation values and the standard deviations of the

variables confirms the information obtained from the principle component analysis.

3.0 Conclusions

This work explores the use of a genetic algorithm in conjunction with Bayesian

inference to optimize the parameters of a simplified Born-Mayer potential function.  The

efficiency of the GA and the accuracy of the information provided by the Bayesian

analysis were examined by varying the number of objectives and parameters.  The

number of objectives was varied by taking higher order derivatives of the potential

function.  Likewise, the number of variables was changed by adding a dummy variable

to the gene sequence.  These variables are not implemented in the objectives

themselves.  Rather, they serve as a measure of performance for the GA and the

Bayesian analysis.

The results of this work indicate that both the GA and the Bayesian analysis

techniques can easily handle large numbers of objectives.  The implementation of a

dummy variable has an effect on the selection procedure during the niching operation.

This results in the dummy variable appearing to be more sensitive or influential than

either d or σ.  The apparent sensitivities of A, σ, and d were confirmed by the evolution

of the expectation value and standard deviations of the parameters.
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6.0 Tables
Table I.  The final eigenvectors for the four variable optimization trial with increasing
numbers of objectives.
# Objs. Var. ID λ1 λ2 λ3 λ4

1 A 0.0018080 0.15165 -0.0063404 0.98841
σ 0.99999 -0.0049685 -7.1028e-05 -0.0010674
d -0.0047492 -0.98842 -0.0033035 0.15163
R 6.6802e-05 -0.0023042 0.99998 0.0067679

2 A 0.00094479 -0.18902 0.0076483 0.98194
σ -1.00000 0.0017681 -0.0010057 0.0013103
d 0.0019796 0.98197 0.0040810 0.18899
R 0.0010210 0.0025601 -0.99996 0.0082804

3 A -0.0012802 0.33336 0.044649 0.94174
σ 1.00000 -0.0016035 -0.00031737 0.0019421
d -0.0021588 -0.94271 0.0024278 0.33359
R -0.00038015 0.012609 -0.99900 0.042900

4 A 0.0018010 0.42528 -0.015589 0.90492
σ 1.00000 -0.00067347 0.00028663 -0.0016688
d 0.00010083 -0.90505 -0.0023383 0.42530
R 0.00025835 -0.0045142 -0.99988 -0.015104

5 A -0.0015163 0.57530 0.0083127 0.81790
σ 1.00000 0.00065699 0.00018116 0.0013900
d -0.00026663 -0.81778 0.025851 0.57495
R 0.00016172 -0.016364 -0.99963 0.021670

6 A 0.0041770 0.56878 -0.020787 0.82222
σ 0.99999 -0.0039264 -0.00032007 -0.0023720
d -0.0018921 -0.82234 -0.032783 0.56805
R -0.00034513 0.015148 -0.99925 -0.035740

7 A 0.00090125 0.54444 -0.012930 0.83870
σ 1.0000 -0.00054004 -0.00021272 -0.00072730
d -5.9178e-05 -0.83880 -0.0096493 0.54436
R -0.00022383 0.0010545 -0.99987 -0.016099

8 A -0.0013767 -0.43313 -0.047273 0.90009
σ -1.00000 0.0012071 0.00030535 -0.00093267
d 0.00067360 0.90122 -0.038141 0.43167
R 0.00026645 0.013924 0.99815 0.059124

9 A 0.00043635 0.43938 -0.024475 0.89797
σ 0.99999 -0.0036610 -0.00048889 0.0012920
d -0.0038664 -0.89825 -0.022155 0.43891
R -0.00041413 0.0091540 -0.99945 -0.031720
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Table II.  The final eigenvectors for the three variable optimization trial with increasing
numbers of objectives.
# Objs. Var. ID λ1 λ2 λ3

1 A -0.0010144 -0.12736 0.99186
σ -0.99999 0.0029582 -0.00064298
d 0.0028522 0.99185 0.12736

2 A 0.00090144 -0.18009 0.98365
σ -0.99999 0.0039655 0.0016426
d 0.0041965 0.98364 0.18009

3 A 0.00077103 -0.28170 0.95950
σ -0.99999 0.0034499 0.0018164
d 0.0038218 0.95950 0.28169

4 A 0.0015669 0.41126 0.91152
σ 1.00000 -0.00067776 -0.0014130
d -3.6698e-05 -0.91152 0.41126

5 A 0.00042968 0.55127 0.83433
σ 1.0000 -0.00018421 -0.00039322
d 6.3072e-05 -0.83433 0.55127

6 A -0.0012382 -0.54771 0.83667
σ -1.00000 0.0014703 -0.00051750
d 0.00094674 0.83667 0.54771

7 A -0.0023353 -0.52101 0.85355
σ -1.00000 0.0023833 -0.0012809
d 0.0013669 0.85355 0.52101

8 A -0.0013972 -0.46967 0.88284
σ -1.00000 0.0021772 -0.00042427
d 0.0017229 0.88284 0.46967

9 A -0.0023313 -0.42281 0.90622
σ -0.99999 0.0030611 -0.0011444
d 0.0022902 0.90622 0.42281
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7.0 Figures
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Figure 1.  Eigenvalue #1, λ1,  as a function of generation and number of objectives.
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Figure 2.  Eigenvalue #2, λ2,  as a function of generation and number of objectives.
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Figure 3.  Eigenvalue #3, λ3,  as a function of generation and number of objectives.
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Figure 4.  Eigenvalue #4, λ4,  as a function of generation and number of objectives.
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Figure 5.  The fuzzy logic based fitness function.
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Figure 6.  The <A> values as a function of generation and number of objectives.
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Figure 7.  The <σ> values as a function of generation and number of objectives.
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Figure 8.  The <d> values as a function of generation and number of objectives.
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Figure 9.  The <R> values as a function of generation and number of objectives.
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Figure 10.  The standard deviations of A as a function of generation and number of
objectives.
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Figure 11.  The standard deviations of σ as a function of generation and number of
objectives.
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Figure 12.  The standard deviations of d as a function of generation and number of
objectives.
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Figure 13.  The standard deviations of R as a function of generation and number of
objectives.
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Figure 14.  Eigenvalue #1, λ1,  as a function of generation and number of objectives.
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Figure 15.  Eigenvalue #2, λ2,  as a function of generation and number of objectives.
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Figure 16.  Eigenvalue #3, λ3,  as a function of generation and number of objectives.
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Figure 17.  The <A> values as a function of generation and number of objectives.
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Figure 18.  The <σ> values as a function of generation and number of objectives.
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Figure 19.  The <d> values as a function of generation and number of objectives.
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Figure 20.  The standard deviations of A as a function of generation and number of
objectives.



27

0.003

0.0035

0.004

0.0045

0.005

0 10 20 30 40 50 60 70 80

1
2
3

4
5
6

7
8
9

Generation

Figure 21.  The standard deviations of σ as a function of generation and number of
objectives.
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Figure 22.  The standard deviations of d as a function of generation and number of
objectives.
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